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Abstract  

Answer grounding is the task of locating relevant vi-
sual evidence for the Visual Question Answering (VQA) 
task. In this work, we propose a cross-attention block, 
which we term Embedding Attention, that re-calibrates 
channel-wise image feature-maps by explicitly modeling 
inter-dependencies between the image feature-maps and the 
image-question-answer embedding. We build upon the cur-
rent best practices of attention methods to design this block. 
The fexibility of our method makes it easy to use differ-
ent pre-trained backbone networks. We demonstrate the 
effectiveness of our method on the VizWiz-VQA-Grounding 
dataset. Our method holds frst place on the 2023 VizWiz-
VQA-Grounding challenge leaderboard. 

1.  Introduction  

The answer grounding task is defned as detecting the 
pixels that can provide evidence for the answer to a given 
question regarding an image. 

Attention Mechanism. In deep learning, attention is 
a mechanism that mimics cognitive attention. The goal 
is to enhance the important parts of the input data and 
fade out the rest. Attention methods can be classifed into 
two classes based on their inputs: self-attention and cross-
attention. Self-attention is a type of attention that quantifes 
the interdependence within the elements of a single input, 
and cross-attention fnds the interdependence across two or 
more inputs [5]. Usually, cross-attention methods are used 
for multimodal inputs. 

The Squeeze-and-Excitation method [2] is a channel-
wise self-attention mechanism widely used in classifcation 
networks. It consists of a global average pooling of the in-
put, followed by two linear layers with an interleaved non-
linearity, and a sigmoid function. Concretely, the output of 
this method is: 

     σ(FC(RELU(FC(g avg pool(X))))) × X (1) 

We adopt this method to build an attention module for 
the answer grounding task. 
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Figure 1. Our proposed embedding attention block. C  denotes 
the number of channels in image feature-maps, and E  represents 
the embedding size. Image, question, and answer embeddings are 
concatenated into one vector. 

2.  Method  

In order to achieve maximum accuracy, we prioritize the 
usage of pre-trained models. We use CLIP [3], which is a 
neural network trained on a variety of image-text pairs. The 
model outputs embeddings for an image and text such that 
the similarity of the embeddings correlates with the corre-
spondence of the image and text. We aim to predict answer 
groundings by processing the image features using the em-
beddings for an image, question, and answer set (Figure 2). 
Towards this goal, we design an attention block based on 
the Squeeze-and-Excitation (SE) block [2] as follows. We 
start with an SE block and make the following three modi-
fcations: 
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Figure 2. Our proposed network architecture. Our embedding attention block processes the image features using the image, question, and 
answer embeddings. We use the image and text encoders from CLIP [3]. C denotes the concatenation operation. 

1. Changing from self-attention to cross-attention. 

2. Adding a normalization layer. 

3. Replacing the sigmoid function with softmax. 

Therefore, our proposed attention block is as follows: 

Softmax(FC(ReLU(LN(FC(IQA)))))  ×  Ii  (2) 

where FC  is a single-layer perceptron, LN  is LayerNorm, 
IQA  is the image-question-answer embedding vector and 
Ii  is the image features at scale i. Figure 1 depicts this 
design. 

3.  Experiment  
Setup. We use AdamW optimizer with a weight decay 

of 0.05 and batch size of 16. We apply the ”polynomial” 
learning rate policy with a poly exponent of 0.9 and an ini-
tial learning rate of 0.0001. Synchronized batch normaliza-
tion is used across multiple GPUs. We use RandAugment 
for data augmentation. 

Dataset. The VizWiz-VQA-Grounding [1] dataset is a 
subset of the VizWiz-VQA dataset and contains a total of 
9,998 VQAs that are divided into 6,494/1,131/2,373 VQAs 
for training, validation, and testing. We augment the train-
ing set of the VizWiz-VQA-Grounding dataset using sam-
ples from TextVQA-X [4]. TextVQA-X is a subset of the 
TextVQA dataset where the images are annotated by hu-
mans. It has 18,096 questions and 11,681 unique images. 

Results. Table 1 shows the top-performing fve teams 
of the 2023 VizWiz-VQA-Grounding challenge. Our pro-
posed method achieves a mean IoU accuracy of 74.1% and 
holds the frst place in this ranking. 

Rank Team mean IoU 
1 UD VIMS Lab (Ours) 74.1 
2 MGTV Baseline 72.4 
3 USTC-IAT-United 70.6 
4 pangzihei 70.3 
5 DeepBlue AI 69.2 

Table 1. The top-fve teams from the 2023 VizWiz-VQA-
Grounding challenge leaderboard [1]. 
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